Helium Gas Turbine Conceptual Design by Genetic/Gradient Optimization

نویسندگان

  • Long Yang
  • Suyuan Yu
چکیده

Helium gas turbine is the key component of the power conversion system for direct cycle High Temperature Gascooled Reactors (HTGR), of which an optimal design is essential for high efficiency. Gas turbine design currently is a multidisciplinary process in which the relationships between constraints, objective functions and variables are very noisy. Due to the ever-increasing complexity of the process, it has becomes very hard for the engineering designer to foresee the consequences of changing certain parts. With classic design procedures which depend on adaptation to baseline design, this problem is usually averted by choosing a large number of design variables based on the engineer’s judgment or experience in advance, then reaching a solution through iterative computation and modification. This, in fact, leads to a reduction of the degree of freedom of the design problem, and therefore to a suboptimal design. Furthermore, helium is very different in thermal properties from normal gases; it is uncertain whether the operation experiences of a normal gas turbine could be used in the conceptual design of a helium gas turbine. Therefore, it is difficult to produce an optimal design with the general method of adaptation to baseline. Since their appearance in the 70’s, Genetic algorithms (GAs) have been broadly used in many research fields due to their robustness. GAs have also been used recently in the design and optimization of turbo-machines. Researchers at the General Electronic Company (GE) developed an optimization software called Engineous, and used GAs in the basic design and optimization of turbines. The ITOP study group from Xi’an Transportation University also did some work on optimization of transonic turbine blades. However, since GAs do not have a rigorous theory base, many problems in utilities have arisen, such as premature convergence and uncertainty; the GA doesn’t know how to locate the optimal design, and doesn’t even know if the optimal solution exists. At present, combining with other algorithms is a feasible way for GAs to solve such problems. The gradient method is a traditional optimization algorithm with quick convergence and good exactness. A GA can quickly reduce the design space and then the gradient method can locate the optimal solution. In this paper, the genetic/gradient method will be employed in the conceptual design of a helium gas turbine, reduce the computation time consumed by iterativeness in the traditional method and work out an optimal design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of turbine blade cooling with the aim of overall turbine performance enhancement

In the current work, different methods for optimization of turbine blade internal cooling are investigated, to achieve higher cyclic efficiency and output power for a typical gas turbine. A simple two-dimensional model of C3X blade is simulated and validated with available experimental data. The optimization process is performed on this model with two different methods. The first method is ...

متن کامل

Optimization of turbine blade cooling with the aim of overall turbine performance enhancement

In the current work, different methods for optimization of turbine blade internal cooling are investigated, to achieve higher cyclic efficiency and output power for a typical gas turbine. A simple two-dimensional model of C3X blade is simulated and validated with available experimental data. The optimization process is performed on this model with two different methods. The first method is ...

متن کامل

Conceptual Design of an Htgr System for a Total Energy Application

A conceptual design for a small HTGR in the 100 MWe size range is described. The reactor drives indirect closed-cycle gas turbine power conversion units using helium as the working fluid and provides both electricity and thermal energy (via a 3800 F hot-water utility system) to serve the projected needs of large U.S. Army installations and industrial facilities in the continental U.S. in the po...

متن کامل

4E analysis and multi-objective optimization of gas turbine CCHP plant with variable ambient temperature

In this paper a gas turbine power plant including air preheater (recuperator), heat recovery steam generator and air cooler system was modeled. Eight parameters were selected as the design variables.  Fast and elitist non-dominated sorting genetic algorithm (NSGA-II) was applied (to maximize the exergy efficiency and to minimize the total cost rate) for the mentioned cogeneration system. Th...

متن کامل

Optimization the Efficiency of Gas Turbines for Air Pollution Reduction

Increasing concerns about energy and emissions from fuel consumption in gas turbines has attracted many researchers to protect the environment and reduce pollutants in the world. The main objective of this paper is to investigate the increasing efficiency of three-stroke gas turbine operation based on the technical analysis of the operation of three-axis gas turbine cycles with non-design condi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003